Weak Bloch property for discrete magnetic Schrödinger operators
نویسندگان
چکیده
منابع مشابه
Internal Lifshitz tails for discrete Schrödinger operators
We consider random Schrödinger operatorsHω acting on l2(Zd). We adapt the technique of the periodic approximations used in (2003) for the present model to prove that the integrated density of states of Hω has a Lifshitz behavior at the edges of internal spectral gaps if and only if the integrated density of states of a well-chosen periodic operator is nondegenerate at the same edges. A possible...
متن کاملWeak Banach-Saks property in the space of compact operators
For suitable Banach spaces $X$ and $Y$ with Schauder decompositions and a suitable closed subspace $mathcal{M}$ of some compact operator space from $X$ to $Y$, it is shown that the strong Banach-Saks-ness of all evaluation operators on ${mathcal M}$ is a sufficient condition for the weak Banach-Saks property of ${mathcal M}$, where for each $xin X$ and $y^*in Y^*$, the evaluation op...
متن کاملweak banach-saks property in the space of compact operators
for suitable banach spaces $x$ and $y$ with schauder decompositions and a suitable closed subspace $mathcal{m}$ of some compact operator space from $x$ to $y$, it is shown that the strong banach-saks-ness of all evaluation operators on ${mathcal m}$ is a sufficient condition for the weak banach-saks property of ${mathcal m}$, where for each $xin x$ and $y^*in y^*$, the evaluation op...
متن کاملEdge currents and eigenvalue estimates for magnetic barrier Schrödinger operators
We study two-dimensional magnetic Schrödinger operators with a magnetic field that is equal to b > 0 for x > 0 and −b for x < 0. This magnetic Schrödinger operator exhibits a magnetic barrier at x = 0. The unperturbed system is invariant with respect to translations in the ydirection. As a result, the Schrödinger operator admits a direct integral decomposition. We analyze the band functions of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nagoya Mathematical Journal
سال: 2001
ISSN: 0027-7630,2152-6842
DOI: 10.1017/s0027763000022157